AMPIGENE® qPCR Green Mix with Separate ROX

Optimized dye-based qPCR

AMPIGENE® qPCR Green Mix with Separate ROX uses the latest developments in polymerase technology and buffer chemistry to enhance qPCR speed, yield, and specificity. AMPIGENE® qPCR Green Mix with Separate ROX uses advanced hot-start technology for superior sensitivity. AMPIGENE® qPCR Green Mix with Separate ROX contains AMPIGENE® Hot Start *Taq* DNA Polymerase enzyme, PCR green dye, dNTPs, MgCl, DMSO and propriety enhancers, enabling high sensitivity and high-fidelity qPCR of a wide range of targets and fragment sizes. The buffer system allows the efficient amplification of GC-rich and AT-rich templates under standard cycling conditions.

The AMPIGENE® ROX passive reference dye is supplied in a separate vial at 50X concentration.

Citations: 1

View Online »

Ordering Information

Order Online »

ENZ-NUC126-1000

1000Reactions

Manuals, SDS & CofA

View Online »

- Hot start technology prevents primer-dimers formation, improving sensitivity and specificity
- Better performance for amplification of GC-rich targets compared to competitors' product
- Separate vial of ROX allows for flexibility of usage. The qPCR mix can be used without the reference dye ROX, with low concentration of ROX, and for high ROX amplification
- Consistent and reliable lot-to-lot performance, delivering reproduce results

Figure 3. Amplification results for the GC-rich DNA target were obtained by targeting a human genomic region that contains 72.9% GC content. Reactions were run in triplicate on a QuantStudio $^{\text{TM}}$ 5 real-time PCR system. The reactions with competitors' reagents were included and the performances were assessed. Product from competitor B failed the amplification.

Figure 1A. Amplification results for the breast cancer gene 2 (BRCA2) were obtained from human genomic DNA samples in absence of ROX reference dye. Reactions were run in triplicate on a QuantStudio™ 5 real-time PCR system and each test was repeated three times. The reactions with competitor's product were included in each test and the performance was assessed. AMPIGENE® qPCR Green Mix with Separate ROX shows higher sensitivity in comparison with the competitor's product.

Figure 1B. Amplification results for the breast cancer gene 2 (BRCA2) were obtained from human genomic DNA samples with low ROX reference dye. Reactions were run in triplicate on a QuantStudio™ 5 real-time PCR system and each test was repeated three times. The reactions with competitor's product were included in each test and the performance was assessed. AMPIGENE® qPCR Green Mix with Separate ROX shows higher sensitivity in comparison with the competitor's product.

Figure 1C. Amplification results for the breast cancer gene 2 (BRCA2) were obtained from human genomic DNA samples with high ROX reference dye. Reactions were run in triplicate on a QuantStudio™ 5 real-time PCR system and each test was repeated three times. The reactions with competitor's product were included in each test and the performance was assessed. AMPIGENE® qPCR Green Mix with Separate ROX shows higher sensitivity in comparison with the competitor's product.

Figure 2C. Amplification results for the Transforming growth factor beta receptor 1 (TGFBR1) gene were obtained from human genomic DNA samples with high ROX reference dye. Reactions were run in triplicate on a QuantStudio™ 5 real-time PCR system and each test was repeated three times. The reactions with competitor's product were included in each test and the performance was assessed. AMPIGENE® qPCR Green Mix with Separate ROX shows higher sensitivity in comparison with the competitor's product.

Figure 2B. Amplification results for the Transforming growth factor beta receptor 1 (TGFBR1) gene were obtained from human genomic DNA samples with low ROX reference dye. Reactions were run in triplicate on a QuantStudio™ 5 real-time PCR system and each test was repeated three times. The reactions with competitor's product were included in each test and the performance was assessed. AMPIGENE® qPCR Green Mix with Separate ROX shows higher sensitivity in comparison with the competitor's product.

Figure 2A. Amplification results for the Transforming growth factor beta receptor 1 (TGFBR1) gene were obtained from human genomic DNA samples in absence of ROX reference dye. Reactions were run in triplicate on a QuantStudio™ 5 real-time PCR system and each test was repeated three times. The reactions with competitor's product were included in each test and the performance was assessed. AMPIGENE® qPCR Green Mix with Separate ROX shows higher sensitivity in comparison with the competitor's product.

Handling & Storage

Long Term Storage -20°C

Shipping Dry Ice

Regulatory Status RUO - Research Use Only

Product Details

Application qPCR

Application Notes For dye-based qPCR

Contents 2X AMPIGENE® qPCR Green Mix (AMPIGENE® Hot Start

Taq DNA Polymerase, PCR green dye, MgCl₂, DMSO,

dNTPs, and enhancers) 50X AMPIGENE® ROX

Last modified: May 29, 2024

